Triggering of OX40 (CD134) on CD4(+)CD25+ T cells blocks their inhibitory activity: a novel regulatory role for OX40 and its comparison with GITR.
نویسندگان
چکیده
OX40 (CD134) is a member of the tumor necrosis factor (TNF) receptor family that is transiently expressed on T cells after T-cell receptor (TCR) ligation. Both naive and activated CD4(+)CD25+ regulatory T cells (T reg's) express OX40 but its functional role has not been determined. Since glucocorticoid-induced tumor necrosis factor receptor (GITR), a related TNF receptor family member, influences T reg function, we tested whether OX40 might have similar effect. Triggering either GITR or OX40 on T reg's using agonist antibodies inhibited their capacity to suppress and restored effector T-cell proliferation, interleukin-2 (IL-2) gene transcription and cytokine production. OX40 abrogation of T reg suppression was confirmed in vivo in a model of graft-versus-host disease (GVHD). In a fully allogeneic C57BL/6>BALB/c bone marrow transplantation, GVHD was lethal unless T reg's were cotransferred with the bone marrow and effector T cells. Strikingly, T reg suppression of GVHD was abrogated either by intraperitoneal injection of anti-OX40 or anti-GITR monoclonal antibodies (mAbs) immediately after transfer, or by in vitro pretreatment of T reg's with the same mAbs before transfer. Cumulatively, the results suggest that in addition to controlling memory T-cell numbers, OX40 directly controls T reg-mediated suppression.
منابع مشابه
Distinct roles for the OX40-OX40 ligand interaction in regulatory and nonregulatory T cells.
The OX40 (CD134) molecule is induced primarily during T cell activation and, as we show in this study, is also expressed on CD25+CD4+ regulatory T (Treg) cells. A necessary role for OX40 in the development and homeostasis of Treg cells can be inferred from the reduced numbers of the cells present in the spleens of OX40-deficient mice, and their elevated numbers in the spleens of mice that overe...
متن کاملCutting edge: OX40 inhibits TGF-beta- and antigen-driven conversion of naive CD4 T cells into CD25+Foxp3+ T cells.
Naive CD4 T cells can develop into regulatory T cells by acquiring the transcription factor Foxp3. Combined signals from the TCR, CD28, IL-2R, and TGF-beta R promote Foxp3 expression in activated naive CD25(-) CD4 T cells. Here we show that OX40 (CD134) signaling inhibits TGF-beta-driven Foxp3 mRNA and suppresses the conversion of naive Ag-specific transgenic CD4 T cells into CD25(+)Foxp3(+) T ...
متن کاملOX40 triggering blocks suppression by regulatory T cells and facilitates tumor rejection
Regulatory T (T reg) cells are the major obstacle to cancer immunotherapy, and their depletion promptly induces conversion of peripheral precursors into T reg cells. We show that T reg cells can be functionally inactivated by OX40 triggering. In tumors, the vast majority of CD4(+) T cells are Foxp3(+) and OX40(bright). However, intratumor injection of the agonist anti-OX40 monoclonal antibody (...
متن کاملPhenotypic characterization of regulatory CD4+CD25+ T cells in rats.
CD25 has become widely used as a marker for a subset of regulatory CD4(+) T cells present in the thymus and periphery of mice, rats and humans. However, CD25 is also expressed on conventionally activated T cells that are not regulatory and not all peripheral regulatory T cells express CD25. The identification of a stable and unique marker for regulatory T cells would therefore be valuable. This...
متن کاملCorrection Ox40 Triggering Blocks Suppression by Regulatory T Cells and Facilitates Tumor Rejection
The authors regret that two of the fl ow cytometry histograms in Fig. 3 C were inadvertently duplicated. The corrected fi gure and its legend appear below. Figure 3. Tumor-infi ltrating T reg cells express functional OX40. (A) TILs were purifi ed from a pool of CT26 tumor nodules, and the CD4 + cell population was analyzed by fl ow cytometry (percentages are shown). As controls, CD4 + T cells w...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Blood
دوره 105 7 شماره
صفحات -
تاریخ انتشار 2005